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Covariant equations of motion of a point of variable mass (called a “body” from now on) in 

the general theory of relativity are derived. The equations are then used to describe motion 

in a Schwarzschild field, in the external field of a rotating spherically symmetric mass, and 

in Einstein’s static universe. 

1. The conventional derivation of the equations of motion of a body of variable mass 

by means of conservation laws does not hold in the general theory of relativity, since a 

correct formulation of the conservation laws themselves is lacking. If, however, we neglect 

the perturbation of the metric due with the mass of the moving body, then the equations of 

motion can be derived on the basis of the equivalence principle. Let us introduce the coor- 

dinates zk and define the metric 

CEsa = gik dxids” (i, k = 0, 1, 2, 3) 

in some domain of the manifold V4 (space-time). 
In the neighborhood of the point Q ( zak) of the manifold we introduce the locally Lorent- 

zian coordinates yk (the system Ku) in the following way: 

yl; = a .k pi 
1 - r*i) + l/Jjsiczi” (2 - ..j) (2 - x,s) 

where the o: form the nonsingular matrix A; rja’ * IS the affine connectivity on V, compu- 

ted at the point Q in terms of zk. The derivatives of the tensor g,, at the point Q (yk= 0) 

are equal to zero in the system K, ; the components of g,, in a small neighborhood of this 

point can be regarded as constants to within second-order small terms. 

The constants elk must be such that the metric tensor has the following components at 

the point Q in the system Ku: 

gih = 0, i # k, a, = g22 = gss = -_goo = --1 

The elk th 
k 

emselves are functions of the numbers x+ . 

With the system K we associate a system K with the same n-hedral from the space 7, 

tangent to the manifo d at the point Q. The laws of conservation of the energy-momentum P 

vector as formulated in the special theory of relativity are valid in the system K. 
These laws imply immediately the equations of motion of a body of variable mass, which, 

as we can show, are 

duo dm 
crn~=-qdsl& 

dul dm duZ du3 
cm x=-q ds u”* ds -=o -=o 7 & 

ho 
& --'I 

W 
I-=ul 

W dy3 
(1.1) 

-- 
ds t ---uz -_uu3 

ds ) ds 
Here m is the rest mass, which is a function of the proper time r = sjc; c is the velocity 

of light in vacua; q is the proper 3-velocity of mass ejection relative to the body; uk are the 
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components of the 4-velocity; the quantity qcdm/ds is identical to the reaction force (*). 
The equivalence principle in this case consists in the statement that Eqs. (Ll), which 

arc valid in K, are aiso valid fn Ku provided the neighborhood of the point Q is sufficiently 
small. 

In the system K, the derivatives of the vector uk from (1.1) must be replaced by the co- 
variant derivatives, i.e. instead of d (,,.)/ds we must write 6 (...)/a~ = ukok, where 0, is 
a covariant derivative computed in terms of the connectivities of V, . 

All that remains is to convert from the coordinates yk to the coordinates xk in the eqna- 
tions modified in this way, and then to tahe the limit as zk +iF+ . Denoting the components 
of the transformed vector of the 4-velodity by U* as before, we arrive at the system of eq- 
uations of motion on V, in the Initial coordinates xk, 

6& bUk dm 
'-h 

o-_ dm t.k 
& --qdff% U, 

l__ 
C-L & - -qlSl;akG 

&U” &uk dxQ da9 ds9 dti 
5ka ~=% ak’ &=% & , & 

w= uo - =g 
, - r= UL 

ds * r = us 

Here a, k are no longer constants, but rather functions of 2. 

2. Let us investigate the motion of a body of variable mass in a Schwarzschild field 
with the aid of Eqs. (1.2). 

The Schwarzschild metric is 

dsf = evzQa - eevdP - ? (dP + sing 8 dqs) (2.4) 

g-t 
Here rp is the gravitational radius; the gravitational constant f is equal to 6.67 x 10s8 
cm3 see; I is the mass of the central attracting body. 

Expression (2.1) defines the metric on V,. We set r 3 xt, 8 = x2, cf, ?B x3; the nonzero 
components of the metric tensor are 

go0 = e’, gll = -e’-‘, ges = -4, g,, = -9 sina 0 
With the coordinates ao identified, Eqs. (1.2) describe the “radial” motion of the body 

in which only the coordinates r and xo vary. 
We choose as our A a diagonal matrix such that 

oull = e’f¶v otl = o-%v, axa = r axa = r sin 0 

The equations of motion id a Schwarzschild field written out in explicit form are 

S==‘/*n, ‘pzo, uxEUs~0 - 

6UO dm 
cm 6~ = - q ds e’-‘ul, 

dz0 
: = ,o ds (2.2) 

6u’ dzz 
~r?$---~-- 

6s 
q $&A@* z=uI 

The self-evident first integra1 is 

&Pa - ,$-“ul t = i 

Let us set 

as 

m=moexp -gc ( > 
If the ejection velocity q is constant (and we shall assume from now ou that this is the 

csse), this variation of mass with time implies a constant ratio of reaction force to mass,. 
We denote this ratio by a and call it, naturally, the “acceleration*‘. 

It is not difficult to obtain another integral, 

f&o - $ = con& (2.5) 

*) These equations appear in different form in [I and 21. 
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Let the motion of the body begin from rest. Thh @iives ua the initial conditions 

o/J (0) = 0, r (0) = ro, uo (0) = a-“:“‘, IL1 (0) = 0, c-‘f*“n = 
-% 

(2.6) 
From the first two integrals we find that 

(2.7) 

‘A 
- roY 1 

The latter equation can be rewritten in a form which can be compared conveniently with 
he Newtonian solution, i.e. 

~(~)a=,M(~-~)+~e(l.~~(I-ro)-+~(r-~O)~ 

For the radial motion in a Newtonian field of a single center (other conditions being 
equal) we have the expression 

;($)‘=,M (f-k) +a(r-ro) 

(where t is the absolute Newtonian time). 
The relativistic correction which follows when we compare the description of motion in 

the proper time 7 with the desuiption of motion by a Newtonian observer whose clock 
measures the absolute time t therefore reduces to the replacement of unity by the quantity 

;I*% + 
&V-r01 

The first term in this expression is due to the non-Euclidean metric; the second term 
represents the relativistic effect which is manifested in the absence of gravity. 

We can, however, adopt a different point of view and introduce a local observer who is 
stationary in the Schwarzschild coordinate system. This observer measums the spatial 
distances 

dl = ,-‘lr’ dr 

and his clock measures the time T+, so that 

&, = c-$‘frv &$ 

Hence, the local velocity of the body is 
dl 

-_&?-v$. 
dr. 

We can compute it approximately with the aid of the two dimensionless parameters 

These parameters ham a simple physical meaning. If cc > X/2, the body moves away 
from the attracting center; on the other hand, if 1 <h/2, then the body moves towards the 
attracting center. The equation 2~ = h means that the maction force “balances” the gravi- 
tational force. We call this value p = I+ “critical”. 

Now, stipulating that b > p +, we can express the local velocity as a series in powers 
of the small parameter A (e.g. if r = 1.5 x lot3 cm is the distance from the Sun to the 
Earth, then for the gravitational f!eld of the Sun X = 1.98 x 1O’8), 

&c [2~(p-l)+~~(p-f)~]“~[1+~(p-~)]-t- 
. { 

r 

( ) 
P- 

- %A I2r (P - i)+p’(p-i)‘)-“~[i-p-‘+p(p-i)]+...} -co 

The Newtoman velocity of the body is given with the same degree of accuracy by the 
exomssion . 

$-= 0([2p(p- I)]” - %A [Zp (p - I)]-” (1 - p-1) + . . .) 
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Returning to Formula (2.7), we note that it remains valid for u < 0 when the body moves 

towards the attracting center. It turns out that the velocity with which the body arrives at 

the gravitational sphere at the surface r = r8 in the 3-space of the Schwarzschild universe) 

remains equal to that of a free test particle of constant mass for both a distant and a local 

observer (the local observer being situated on the surface of the sphere). 

In the former case (that of the distant observer) the velocity remains equal to zero; in the 

latter case (that of the local observer) it is equal to the velocity of light c. Only the proper 

velocity, i.e. 

dr/dz IrzTg = - ce’/ayO (1 -j- p’!s”o) (2.9) 

depends on the reaction force by way of the parameter v and can exceed the velocity of 
light. 

Computations show that the effects due to the non-Euclidean character of the metric 

diminish rapidly with increasing r. 

The metric is pseudo-Euclidean even for not very large r, and the principal quantitative 

contribution can be determined simply by making use of the appropriate formulas of the 

special theory of relativity. 

In noninsular fields corresponding to cosmological models the situation is somewhat 

different: the effects due to the curvature of space-time accumulate with motions over large 

distances. 

3. Let us now consider the motion of a body of variable mass in a gravitational field 

produced by a rotating spherically symmetric mass M. The metric in this case (cf. 133) is 

- 2 4 x sin? 0 dq dx’J, 
2 o&r lo 

II=-- 
5c=- CM 

(3.1) 

Here lo is the moment of momentum of the rotating sphere (in the ordinary sense); R, is 

the radius of the sphere; oo is the constant angular velocity of rotation. 

We introduce the notation 

g22 = - rz 

g33 = - r2 

i 1 l++ sinr0, go3 = - ‘;g x sin2 8 

Next, we stipulate that the nonzero components of the matrix A are (3.2) 

aoO= goo’ia, al1 - (-- gu)"', a22 = (- g22p, a33 = 
( 

go32 - googas '/z 

) , doS= goa$oo -‘I, 
go0 

Assuming that m (s) is defined by (2.4), we can rewrite equations of motion (1.2) as 

Roo 
8,. firJo -‘It @!_ - x 

- 6s + tYosgoo (-- 911Pu1, 
6U~ 

0 
dx” 

6s -c a 6s= - = g 
ds ’ 

t- pd” g= 5 (~001’940 + go357~-“%43), 
dr 

-- d8 - ul, 
dq - -_ua 
ds - 

e = yzit, 242 E 0 (3.3) 

The trivial first integral of the system is 

goJuul + grrar* + g?aura + gmua’ + 2,oosuoUz = 1 (3.4) 

We can write two further first integrals analogous to the impulse integrals of classical 

mechanics for the cyclical coordinates’xo, 4. These integrals are 

6oou” -/- goaU'= s 
s 

(- googl~)'~ dr + Cl 

T” 
(3.5) 
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P 

Po2u” + gS8us = + 
s 

go&;” (- !?I#~ dr f ‘72 (3.6) 

where C, and C, are arbitrary constants. 
As in Section 2, we investigate the motion beginning from rest. The corresponding ini- 

tial conditions are 
50 (0) = 0, r (0) = 7.0, qI (0) = 0 

u” (0) = [go0 (ro)lv'? t2 (0) = 0, u3 (0) = 0 

This implies that 

C, = k,, (ro)l’/: c, = go3 (ro) [gao (ro)!-*/? (0(O) ZZ n/2, z? =_O) 

The functions no, ut, u2 can be expressed as series in powers of the small parameters 

/J, A (2.8), 

ILo = 1 + h (--l/f + p’) + p (p - 1) + hp(p---l) (p-1) + a2 I_‘,‘8 - p-1 (-‘/a + p-9 + 
-I- (x / r#p-4 (p - 1)1 + . . . . 

l2 = Xhr-2 o IP (p - 1) + 1/2p”h (p - 1) + pps3 (In p - 1 + p-9 + . ..I 

(U1)2 = --hp-’ (p - 1) + 2 p (P - 1) - h2 [‘/2 P1 + (X ! Fo)’ (p - i)2p-21 + 

t-P2 (P - v - @q-l (p - 1) + . . . . p= r/r0 (3.7) 

The expression for (IJ’)~ implies that it has meaning if either 2~ > X for p > 1, or 2~ < X 
for p < 1. 

These inequalities are, in fact, fulfilled, since p = ~1 * = A/2 is the critical value of the 
parameterp: p> 1 forgYP*, andp< 1 forP<p*. 

Since h=p = 0 is a branch point in the expansion for (u 1)2, we do not know how to go 
about constructing a series for u1 in ~1 and h. We are able, however, to construct a series 
for u1 in X for a fixed I-L> p*, 

19 = a, + a,h + a&’ + . . . 

and also a series in ~1 for a fixed h, 

19 = b, + b,p + b,$ + . . . 

which converges for p <CL*. 
The formulas for computing the first coefficients of these series are 

a0 = 12~ (P - 1) + ~2 (p - i)21Yfr al = --VZP-~ (P - 1) 11 + V (P - l)lai’ WI 

b, = [hp-1 (1 - p)]‘/z, b, = -‘h [1 + hp-l (1 - p)l [h-‘p (1 - p)l’ll 

A factor not present in the case of a Schwarzschild field is the appearance of a compo- 
nent of the &velocity u3, i.e. of deflection of the body in the field. Purely radial motion 
without special correction is not possible. The deflection depends on the quantity x pro- 
portional to the angular velocity 00 of rotation of the central body. It is not difficult to com- 
pute the deflection 4f.p) of the body as it moves away from the center simply by retaining 
only first-order small terms in h. 

The appropriate formula is 

‘p (P) Z 2dbF,’ (2&” [‘/A P-’ (P - 1)1/Z (l/2 - P-l) + 1/8 arc tg (p - l)“r,l 

For sufficiently large p we can assume that 

4. The metric of the static cosmological model of Einstein with a space of constant 
positive Gaussian curvature K is, as we know (cf. [4]), given by 

ds2 = dx@ - R2 [Q2 + sin2 2 (do2 + sin2 6 dq2)], Ra = K-1, 20 = ct (4.1) 
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Here t is so-called universal time; c is the velocity of light in vacno. The coordinates 

used to express metric (4.1) have the following ranges 

o<x<n, O<cp<2n, o<3<n,o<x”<c= 

The distance 1 between the two points P and Q in space two of whose coordinates are 
equal, x = 0 = n /2, is 

l = R [(P (0) - ‘P WI 
Let us consider the motion of a body of the variable mass m (s) beginning from the rest 

state. In the coordinate system xo, x, 4, 8 this means that for s = 0 the coordinates of the 

point with which the body is identified can be assigned the values 

20 (0) = 0, x (0) = l/2 n, 0 $9 = l/2 n, ‘p (0) = 0 (4.2) 

and that the components of the Cvelocity are 

IJo (0) = 1, I2 (0) = 0, ur (0) = 0, 113 (0) = 0 (4.3) 

We assume that A is a diagonal matrix; its nonzero components are 

400 = 1, aI1 = R, 422 = R sin x, 4x3 = R sin x sin 8 

Clearly, we .zan assume that 

Thus, we are dealing with the system of equations 

duo dm 
cm ~=-q~Rua, 

dz0 -- 
ds -” 

dus dm u0 dq 
(4.4), 

cm z=-qdsii-, ds=u2 

under initial conditions (4.2) and (4.3). To this we mnat add the self-evident first integral 

u02 _ R'& = 1 (4.5) 
The solution of this system is of the form 

urJ (S) = ‘/aB” (s) 11 + B” Ml, ua (s) = l/r fi-t (s) [pa (s) - i)] R-’ 

s? (s) = + s ’ 1 + P”@) da, cp(q= * ’ ’ ’ - 
2R p0 ‘dz 

o P(z) s o P(z) 
(4.6) 

It ia natural to construct the function m (s) in such a way as to achieve the maximum 
range 1, for a preacrlbed total mass bnrnup m. - ml, ml = m (sl) in the fixed proper time 

r1 
=.91/c. 

Two posaibilitica are of interest here: 
1. The ratio of the reaction force to the instantaneous mass is bounded above. 

c dm -c 
-q m ds <a 

The quantity a can be called the “limiting acceleration” of the body of variable mass 
under the action of the thrust. 

2. The expenditure of fuel mass per second is bounded above, i.e. 

dm 
--cdsQa 

where 0 is the limiting per-second burnup measured in the proper time. 
Under one of these restrictions it is necessary to choose the function ,@ (a) satisfying 

the boundary conditions 

P(O)=% P(81)=(~)q’c>~ (4.7) 

in such a way that the integral 
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I= RQ ($1) = ‘/a s’ B-1 (I) [p’ (a) - i] dr 

0 

(4.8) 

is maximal. In other words, from among the curves connecting the points (0, 1) and (ssl, 
fl (s )) on the plane s, fl we must find the curve flo (s) for which the integral attains its 
maxknum value. Subject to comparison are all the piecewise-smooth curves with a nonnega- 
tive derivative in the domain bouuded by the horizontal straight line fi = 1, by the vertical 
straight line s = s t! and by the limiting curve corresponding either to motion with the limi- 
ting acceleration a, or to motion with limiting bumnp per second u. 

It is not difficult to verify that the equation of this limiting curve is, in the first case, 

P. (8) = 
erp (as / 19) (0 < 8 < s(t)) 

B1 (s(1) < 8 < 83 
and, in the second case, 

. 

- as J c)“” (0 < 8 < sq 
P+ (4 = 

m$’ (mo 

& (s@) <s <s:,- . 

(4.9) 

(4.10) 

Here 

& = p (SJ, s?’ = ck- ln &, sp1= 0-l (mo - -1) 

Turning now to integral (4.8), we readily note that the function @,(a) which yields the 
solution of the optimal problem must have the following property for all the permissible 
B(s): 

Bo (s) - B (s) > 0 

This meaus that PO (s) coincides with one of the two limiting functions, i.e. with (4.9) 
or (4.10). 

Thus, in order to achieve the maximal range for a given mass bumup and a fixed flight 
time, it is necessary first to move either with the limiting per-second burnup, or with the 
limiting acceleration; this is followed by the unpowered portion of the trajectory, over which 
the thrust is equal to zero. 

The formulas for a maximal range are as follows. 
In the first case, i.e. under restricted acceleration, 

L = ‘Ja B,’ (61 - 1) [cSa” Cl-4 - 1) + (PI + 1) (sl - c’cc-1 11, &,,I 

and in the second case, i.e. under restricted bumup, 

L = i/e (moc6i [(f _ x)-l (i _ p(x-W ) + (2 + x)’ (p;(x+l)l* - I) - 

- (I- lp) (PI - ky)lf :I (P1- p;9,, x=qlc<i 

1, = IJa Pw+ (1~ PI + l/s - PI + P;” - ‘I@?) + sl (~1 - p;‘)]. x = i 

In considering the geometry of the trajectories, we confine ourselves to motion with 
limiting constant acceleration. Thus, we set o(s)= exp (a s/c2). It is clear that in this 
case the instantaneous mess m (T), the initial mess mo, and the proper time T are related 
by Expression 

m (f) = m. exp (-ar J q) 
Turning to Formulas (4.6), we find that 

u’J (s) = ch s , 1 
us(s) =xsh 7, 

29 
as z+‘(r)=$sh 5, q(s)=a~shr 3 (4.11) 

In accordance with the usual interpretation (cf. [4]), we assume that the arbitrary time 
cross section x0 = coast of the Einstein universe is a three-dimensional sphere imbedded 
in Euclidean space. All space-time is a product of a straight line and a three-dimensional 
sphere, aud is therefore a cylinder 

xla + & + & + B = 8s 

imbedded in five-dimensional space. Here 
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z1 = R sin x sin 0 sin cp, z4 = R cos x 

9 = R sin x sin 6 cos cp, z3 = R sin x cos 6, z5 = x0 

It is clear that for x = 8 = n/2 the world line of a body of variable mass whose motion 

is defined by Formulas (4.6) is a helix inscribed on a two-dimensional cylinder. Its para- 

metric equations are 

i 

2CS 

zr=Rsincp=Rsin zshz$ , .zs = 24 ZZc (J 

CZ 
z5 =ash $- 

(4.12) 

zZ=Rcoscp=Rcos , 

Thus, the spatial trajectories are closed. 

The proper time 7 = s/c measured by a clock on the moving body over a single trajectory 

loop is given by 

(4.13) 

On the other hand, the universal time L = x0/c measured by a clock at the starting point 

until return of the body is 

(4.14) 

The fact that r> 0 means that 

In [(I + 3~)“” + z”‘l < ix (1 + 41”” (4.15) 

which implies the “twin paradox”, i.e. the statement that 7 < t. 

The distance traversed in a single trajectory loop is %rR. Light covers this distance in 

the time 
t, = 2nR /c (r < t* < t) 

If we take the value of R suggested by von Laue, i.e. R = 5x 102’ cm, and assume that 

the acceleration u is equal to IO3 cm. set-2, then V aRcm2 = 1.745 x IO’O. and we can use 

the approximate formulas 

With these values we find that 

7/t = 7.16 x lo-to, 7 = 7.5 x IO* set = 23.75 years. 

It is interesting to note that if the body traverses several loops, then 

loop diminishes and tends to zero with increasing k. The formula for the 

for traversal of k + I loops is 

riti z ccP In (1 + fV1) 

The universal time per loop approaches t, from below. 

the proper time per 

proper time required 

Now let us consider motion over a single loop when the reaction force accelerates the 

body over the first half of the path (i.e. over nR), and brakes it over the second half of the 

path in such a way that the body arrives at the starting point with zero velocity. 

The universal time is 

(4.16) 

and, as before, to I: r+. The proper time is 

(4.17) 

The mass burnup can be estimated by means of the expression 
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ho = 
m (TO) ---&_[(* + g*+ (EC)‘“]-‘“” (4.18) 

It is useful to compare this relation with that corresponding to traversal of a loop with 
acceleration of fixed sign, 

The ratio of these quantities is 

h 
7- z 1.745-1010, q = c 

A0 

Thus, braking increases the mass burnup sharply. This is due to increased flight time. 
It is easy to see that the acceleration time is equal to the braking time. On the other hand, 
the proper time expended on traversal of the second half of the loop with acceleration is 
much smaller than the time expended on traversal of the first half of the loop. 

The author is grateful to V.Ya. Lin for his discussion of the problem. 
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