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Covariant equations of motion of a point of variable mass (called a ‘‘body’’ from now on) in
the general theory of relativity are derived. The equations are then used to describe motion
in a Schwarzschild field, in the external field of a rotating spherically symmetric mass, and
in Einstein's static universe.

1. The conventional derivation of the equations of motion of a body of variable mass
by means of conservation laws does not hold in the general theory of relativity, since a
correct formulation of the conservation laws themselves is lacking. If, however, we neglect
the perturbation of the metric due with the mass of the moving body, then the equations of
motion can be derived on the basis of the equivalence principle. Let us introduce the coor-
dinates x¥ and define the metric

ds® = g;) dz'dz¥ (i, k=10, 1, 2, 3)
in some domain of the manifold ¥, (space-time).

In the neighborhood of the point Q (x4¥) of the manifold we introduce the locally Lorent-
zian coordinates y* (the system K,) in the following way:

y'=af @ — =)+l le) (2 —2)) (2° —2,°)
where the aj form the nonsingular matrix 4; F"I is the affine connectivity on ¥, compu-
ted at the point Q in terms of x*, The derivatives of the tensor i at the point Quk=0
are equal to zero in the system K ; the components of g, in a small neighborhood of this
point can be regarded as constants to within second-order small terms.

The constants a,k must be such that the metric tensor has the following components at
the point Q in the system K :

gix =20, ik, g; = gor = g33 = —goo = —1

The a,k themselves are functions of the numbers x4 ¥,

With the system K_ we associate a system K with the same n-hedral from the space T,
tangent to the manifofd at the point . The laws of conservation of the energy-momentum
vector as formulated in the special theory of relativity are valid in the system K.

These laws imply immediately the equations of motion of a body of variable mass, which,
as we can show, are

duo dm " dul dm du? dud
Mgy T Ay ¥ M T = — g v a5 = ds T
dyo dy? dy? dy® 41
as =¥ gg =uh g =uh, o=

Here m is the rest mass, which is a function of the proper time 7 = s/c; ¢ is the velocity
of light in vacuo; g is the proper 3-velocity of mass ejection relative to the body; u* are the

537



538 L.A. Rozenberg

components of the 4-velocity; the quantity gedm/ds is identical to the reaction force (*).

The equivalence principle in this case consists in the statement that Egs. (1.1), which
are valid in K, are also valid in X, provided the neighborhood of the point Q is sufficiently
small,

In the system K | the derivatives of the vector ¥ from (1.1) must be replaced by the co-
variant derivatives, i.e. instead of d (...)/ds we must write § (...)/Ss = u* » Where V,_is
a covariant derivative computed in terms of the connectivities of V.

All that remains is to convert from the coordinates y¥ to the coordinates x¥ in the equa-
tions modified in this way, and then to take the limit as x* -« . Denoting the components
of the transformed vector of the 4-velocity by u* as before, we arrive at the system of eg-
uations of motion on Vd in the initial coordinates x¥,

Buk dm su* dm
cma,? =97 a,‘luk, ema,t = aki’uk {1.2)
du* du’ dx? dz? dat dr®
o =0, af 5 =0, Fr=u, -F=u, = r=u, =u
Here a,* are no longer constants, but rather functions of Pl

2. Let us investigate the motion of a body of variable mass in a Schwarzschild field
with the aid of Eqs. (1.2).
The Schwarzschild metric is

dst = 'z — ¢~drd — 4 (d6? + sin? O dg?) (2.1)
r M
F=t-=F, =i

Here r ;is the gravitational radius; the gravitational constant f is equal to 6.67 x 1078
g1 cm? sec; M is the mass of the central attracting body.
Expression (2.1) defines the metric on V. We set r = %1, 8 =22, ¢p = x%; the nonzero
components of the metric tensor are
goo=12¢", fn = —¢") gu= —1% g3z = —risin?0
With the coordinates so identified, Egs. (1.2) describe the *‘radial’’ motion of the body
in which only the coordinates r and x° vary.
We choose as our 4 a diagonal matrix such that
[yv 1
r

1 . .
al=e " = ¢ /’“, @=r, a=—=rsing

The equations of motion in a Schwarzschild field written out in explicit form are
8=, ¢=0, B=u8=0

4 dm dz?
on =g G, = @2
dul dm dx
om g =g Ot =
The self-evident first integral is
00 — ' =1 (2.8)
Let us set
os
m == mq exp (—— ;c—) (2.4)

If the ejection velocity g is constant (and we shall assume from now on that this is the
case), this variation of mass with time implies a constant ratio of reaction force to mass.
We denote this ratio by . and call it, naturally, the “*acceleration’’,

It is not difficult to obtain another integral,

evuo .g:. —
— —t ==const (2.5)

*) These equations appear in different form in [1 and 2}.
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Let the motion of the body begin from rest. This gives us the initial conditions

~'s
2°(0)=0, r(0)=ry, u®(0)= e—'/,v., ul(0) =0, el — ( —_ :—i) (2.6)

From the firat two integrals we find that

d20 1

o= [e fvs -+ % (r— "o)] e’ 2.7
di r r 2a , 3 i
77:-=[-r£—'rf‘+c—fe”“<'—'o>+%(f —””]

The latter equation can be rewritten in a form which can be compared conveniently with
he Newtonian solution, i.e.

1 [dr\2 1 1 o?
For the radial motion in a Newtonian field of a single center (other conditions being
equal) we have the expression

() = (3= ) +at—r

(where ¢ is the absolute Newtonian time).

The relativistic correction which follows when we compare the description of motion in
the proper time 7 with the description of motion by a Newtonian observer whose clock
measures the absolute time ¢ therefore reduces to the replacement of unity by the quantity

[»]
et 5 (r—ro)

The first term in this expression is due to the non-Euclidean metric; the second term
represents the relativistic effect which is manifested in the absence of gravity.

We can, however, adopt a different point of view and introduce a local observer who is
stationary in the Schwarzschild coordinate system. This observer measures the spatial
distances

dl = ¢V dr
and his clock measures the time 74, so that
dv, = c 1"V dg0
Hence, the local velocity of the body is
dl ul

Fe, = T
We can compute it approximately with the aid of the two dimensionless parameters

r r
N 28
These parameters have a simple physicel meaning. If 4 > A/2, the body moves away
from the attracting center; on the other hand, if 4 < A/2, then the body moves towards the
attracting center. The equation 2y = A means that the reaction force *‘balances’’ the gravi-
tational force. We call this value y =y * *‘critical"’.
Now, stipulating that y> 1 *, we can express the local velocity as a series in powers
of the small parameter )\ (e.g. if r, = 1.5 x 1013 cm is the distance from the Sun to the
Earth, then for the gravitational f?eld of the Sun A\ = 1.98 x 10°8),

dl ,
- =c{Ee—D+pre—00h 1+ — 1 — (=)

p=-
— YA 12 (p— )+ P2 — P —pr o — 1] + ..}

Fo
The Newtoman velocity of the body is given with the same degree of accuracy by the
expression

dr 1 1
=2 e—D]"— YA 2p o — )] A—p ) .. )
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Returning to Formula (2.7), we note that it remains valid for @ < 0 when the body moves
towards the attracting center. It turns out that the velocity with which the body arrives at
the gravitational sphere at the surface r=r in the 3-space of the Schwarzschild universe)
remains equal to that of a free test particle of constant mass for both a distant and a local
observer (the local observer being situated on the surface of the sphere).

In the former case (that of the distant observer) the velocity remains equal to zero; in the
latter case (that of the local observer) it is equal to the velocity of light ¢. Only the proper
velocity, i.e.

dridt|._, =— ce/®o(1 -4 pe’l™) (2.9)

r=rg
depends on the reaction force by way of the parameter i and can exceed the velocity of
light,

Computations show that the effects due to the non-Euclidean character of the metric
diminish rapidly with increasing r.

The metric is pseudo-Euclidean even for not very large 7, and the principal quantitative
contribution can be determined simply by making use of the appropriate formulas of the
special theory of relativity.

In noninsular fields comesponding to cosmological models the situation is somewhat
different: the effects due to the curvature of space-time accumulate with motions over large
distances.

3. Let us now consider the motion of a body of variable mass in a gravitational field
produced by a rotating spherically symmetric mass M. The metric in this case (cf, [3]) is

rg‘ Tg
ds? = (1-———) dxo? — (1 +T) (dr2 4 r2d6® - r?sin? @ dg*) —

-
r 2 woRy? I
g . & Ol Lo

— 2 %sin’0de dzf, K= T =T 3.1)

Here I, is the moment of momentum of the rotating sphere (in the ordinary sense); R, is
the radius of the sphere; @, is the constant angular velocity of rotation.
We introduce the notation

g g g
go=1——7", gu=—\1+-"/], gu=-—r*{14-—
ry, rg
gag = — 12 (1-{—%) sin®0, go3 =——%sin®@
(3.2)

Next, we stipulate that the nonzero components of the matrix 4 are

L] 1
Go3® — googas \/2 o
"), a’= gea%oo”
goo

Assuming that m (s) is defined by (2.4), we can rewrite equations of motion (1.2) as

a0=goo”, alte(—gn)",  alt=(—gn) o= (

. Bu® _y, 0wy a - Sus da®
oo’ 3 T gosgm‘,/’ Bs = ot (—é&m) 1, 5+ =0 s = ¥
Sul o dr d
(—an)” e (200U + gasgoo™ "), oo=uh % =u?
0 = o, =0 (3.3)
The trivial first integral of the system is
goou® 4 guul’ + g2u 4 gegud’ + 2g03utud = 1 3-4)

We can write two further first integrals analogous to the impulse integrals of classical
mechanics for the cyclical coordinates’ %40 ¢ . These integrals are

,
o
goou® + gogud = = S (— googn1) 2 dr +C (3.5)

Ta
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r

o
gost® - gasud = —7 S gogga;/* (—eu)dr +Cy (3.6)
To
where C, and C, are arbitrary constants,
As in Section 2, we investigate the motion beginning from rest. The corresponding ini~
tial conditions are
200)=0,r0)=r,¢©0)=0
w0 (0) = [goo (F)l™, w2 (0) = 0, u? (0) = 0
This implies that

—t/,

C; = lgoo (rol™  Co = gua(ro) [goo (r))) ™" (8(0) = /2, u*=0)
The functions u”, u!, u? can be expressed as series in powers of the small parameters
i, A (2.8),
W= 1+ h (e 07+ (p— 1)+ M=) (07 + W [ty — p7 (<M + ) +
B/ (o — DI+ .

w? = whr[p2 (o — 1) + Yoph(p — 1) FppP (Inp — 1+ p) + ..]
@R = —hpT(p— 1)+ 2p(p—1) = A Yap™ + (x/r? (0 — 1272 +

Fu (o — 12— phpt (p — 1) + ..., p=r/lr 3.7

The expression for (u!)? implies that it has meaning if either 2u> A forp> 1, or 2u <A
forp < 1.

These inequalities are, in fact, fulfilled, since = g * = A/2 is the critical value of the
parameter i p> 1for p> p*, and p <1 for p <p*,

Since A=p = 0 is a branch point in the expansion for (u )2 we do not know how to go
about constructing a series for u! in g and A. We are able, however, to construct a series
foru! in A for a fixed p> p*,

ul = ay + b+ ah? 4 ...
and also a series in y for a fixed A,
ul = by + by - bu? + ...

which converges for y < pu*.
The formulas for computing the first coefficients of these series are

=12 p—0+we—01" o= —-DU+up Dt (38
bo = [Ap7? (1 — O)IY:, by = =Y [t + A (1 — )] [ATp (1 — )]s
A factor not present in the case of a Schwarzschild field is the appearance of a compo-
nent of the 4-velocity u?, i.e, of deflection of the body in the field. Purely radial motion
without special correction is not possible. The deflection depends on the quantity ® pro-
portional to the angular velocity ¢ of rotation of the central body. It is not difficult to com-
pute the deflection ¢ (p) of the body as it moves away from the center simply by retaining

only first-order small terms in A.
The appropriate formula is

P (p) = 2uhrg™ QU 1ap™ (0 — 1) (2 — p7) F Yaare tg (0 — 1))
For sufficiently large p we can assume that
P (p) = Yamhrg? (2p) ™"

4. The metric of the static cosmological model of Einstein with a space of constant
positive Gaussian curvature K is, as we know (cf. [4]), given by

ds? = dz%® — R? [dy? + sin® y (d0? - sin? O d¢?)], R% = K-, 20 = ¢ (4.1)
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Here ¢ is so-called universal time; ¢ is the velocity of light in vacuo. The coordinates
used to express metric (4.1) have the following ranges

0<x<m 0<gp<2m, 0O, 02’ <o
The distance ! between the two points P and Q in space two of whose coordinates are
equal, y=0=1x/2, is
l= Rl (Q) — ¢ (P)]

Let us consider the motion of a body of the variable mass m (s) beginning from the rest
state. In the coordinate system x9, y, qB, @ this means that for s = 0 the coordinates of the
point with which the body is identified can be assigned the values

2 (0) =0, x(0) =1en, 00)="sn, ¢0)=0 (4.2)
and that the components of the 4-velocity are
wWO)y=1 u0)=0, u2(0)=0, u®(0) =0 (4.3)

We assume that 4 is a diagonal matrix; its nonzero components are
a% =1, ai! = R, a? = Rsiny, ag8= R sin ysin 0
Clearly, we an assume that

) d
=08=1 = =0 — I —
X =0=1an, w=ult=0; 5 R
Thus, we are dealing with the system of equations
du® dm . o da® o
cm -d—s-=—qERu, T =u
dus3 dm u® do . (4.4)
Mgy =93 R s =Y
under initial conditions (4.2) and (4.3). To this we must add the self-evident first integral
uo% — R2y®® =1 (4.5)
The solution of this system is of the form
w(s) =Yopr (M + P2, () =2 b7 () IB% (5) ~ 4)] R7?
s 8
1 ¢148%(2) — 1 (B —1
0 s)=_S_____dz, (s ___S__.___dz (4.6)
O=7)"Fw YO=R) @

por=[ma]", m=mno

It is natural to construct the function m (s) in such a way as to achieve the maximum
range [ for a prescribed total mass burnupm, —m, m;=m (s,) in the fixed proper time
‘7’l =8, /c.

Two possibilities are of interest here:

1. The ratio of the reaction force to the instantaneous mass is bounded above.

¢ dm
— T ds <o

The quantity @ can be called the ‘‘limiting acceleration’’ of the body of variable mass
under the action of the thrust.

2. The expenditure of fuel mass per second is bounded above, i.e.

SO |

where ¢ is the limiting per-second burnup measured in the proper time.
Under one of these restrictions it is necessary to clicose the function B (s) satisfying
the boundary conditions

B(0)=1, B(s1)= (—ml)wc> 1 4.7)

my

in such a way that the integral
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8
=R () =1/,S B1(s) [B* (s) — 4] dz (4.8)

0
is maximal. In other words, from among the curves connecting the points (0, 1) and (s,,
Bls ;)) on the plane s, B we must find the curve Bo (s) for which the integral attains its
maximum value. Subject to comparison are all the piecewise-smooth curves with a nonnega-
tive derivative in the domain bounded by the horizontal straight line 8= 1, by the vertical
straight line s = s |, and by the limiting curve corresponding either to motion with the limi-
ting acceleration a., or to motion with limiting burnup per second ¢.

It is not difficult to verify that the equation of this limiting curve is, in the first case,

exp (as / ¢¥) 0<s<sM)
Be (8)= { (4.9)
B W <s <)
and, in the second case,
alc — —g/c @)
ma (e oe/o) O<r<si (4.10)

Be () = { B (D <5 <)

Here
f=B8 (), s =claInpy, s =07 (m— my)
Turning now to integral (4.8), we readily note that the function ﬁo(a) which yields the
solution of the optimal problem must have the following property for all the permissible

B(s):
Po(s) —B (>0

This means that Bo (s) coincides with one of the two limiting functions, i.e. with (4,9)
or (4.10).

Thus, in order to achieve the maximal range for a given mass burnup and a fixed flight
time, it is necessary first to move either with the limiting per-second burnup, or with the
limiting acceleration; this is followed by the unpowered portion of the trajectory, over which
the thrust is equal to zero.

The formulas for a maximal range are as follows.

In the first case, i.e. under restricted acceleration,

bn= Y270 By — 1) [P By — 1) + (B, + 1) (s — a~t1n By)]
and in the second case, i.e. under restricted burnup,
Ly = Yfa {mocs™ [(1 — )2 (1 — B™) - (1 4 )1 B70* — 1) —
—U=B") BB+ 8 @—BY), x=g/c<1
=2 [moes™ (InB1 + Y2 —B1 4 B — VB D) + 1 B —B7Y], %=1

In considering the geometry of the trajectories, we confine ourselves to motion with
limiting constant acceleration. Thus, we set 8(s) = exp (a s/c?). It is clear that in this
case the instantaneous mass m (7), the initial mass ™o and the proper time T are related
by Expression

m (T) = mg exp (—at/ q)
Turning to Formulas (4.6), we find that
as 1 as c? as 2c? as
u°(s)=chc—z, us (s) =g sh -7, 2 (s)=—~sh -, P (s) =5 sh® 57 (411)

In accordance with the usual interpretation (cf. [4]), we assume that the arbitrary time
cross section % = const of the Einstein universe is a three-dimensional sphere imbedded
in Euclidean space. All spacestime is a product of a straight line and a three-dimensional
sphere, and is therefore a cylinder

A4 2% g u? = R
imbedded in five-dimensional apace. Here
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2! = R sin y sin 0 sin @, 2% = R cos y
22 = R sin y sin B cos ¢, 22 = R sin y cos 0, 25 = 2°

It is clear that for y = 0 = r7/2 the world line of a body of variable mass whose motion
is defined by Formulas (4.6) is a helix inscribed on a two-dimensional cylinder. Its para-
metric equations are

1___R 3 —_— 3 E 2 _(1_8‘ 3 _— 4
z1=R sin = R sin 3k sh 52 ), P#=¢ =0
(4.12)

. 2¢% o as c* as
z2=R cos @ =R cos @"sh 06E | » ZSZTSh—;"—

Thus, the spatial trajectories are closed.
The proper time 7 = s/c measured by a clock on the moving body over a single trajectory
loop is given by

2 T naR\f: 1R\
r= 2 (14 2R ()] (4.13)
On the other hand, the universal time ¢ = x9/¢c measured by a clock at the starting point
until return of the body is
2¢ [naR naR\ 7"
t:—oT ct 1+ c? (4.14)
The fact that x > 0 means that
I + 2" + 2" <zt + 2" (4.15)

which implies the *‘twin paradox’’, i.e. the statement that 7 < t.
The distance traversed in a single trajectory loop is 27 R. Light covers this distance in
the time
t,=2nR /¢ Tty <t
If we take the value of R suggested by von Laue, i.e. R = 5x 1027 cm, and assume that
the acceleration a is equal to 103 cm- sec"2, then W aRe¢~2= 1.745x 1010, and we can use

the approximate formulas
2 [ (maR\":
rz—a—ln [2(—0.‘,—') :I,’ t=t,
With these values we find that
T/t=17.16 x 10-19, T = 7,5x 108 sec = 23.75 years.

It is interesting to note that if the body traverses several loops, then the proper time per
loop diminishes and tends to zero with increasing k. The formula for the proper time required
for traversal of k + 1 loops is

T4y et In (1 4 k7))

The universal time per loop approaches t, from below.

Now let us consider motion over a single loop when the reaction force accelerates the
body over the first half of the path (i.e. over 7 R), and brakes it over the second half of the
path in such a way that the body arrives at the starting point with zero velocity.

The universal time is

4¢ [naR maR\7"
’°=T[—2c= (1+ e ﬂ (4.16)
and, as before, ¢, = t«. The proper time is
be aaR\"* [naR\"
W= In [ 1+ 5=) +\ 2 To > T (447)

The mass burnup can be estimated by means of the expression
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mite) [ naR\ "z AR\ ]-4ele
Aoz——mo :[<1+ Zcz) +<?> } (4.18)

It is useful to compare this relation with that corresponding to traversal of a loop with
acceleration of fixed sign,

c2 c2
The ratio of these quantities is
A (na}?)c/q
)

}\,0 -~ c?

A
—— =~ 1.745-101, g =c¢
Ao

Thus, braking increases the mass burnup sharply. This is due to increased flight time.
It is easy to see that the acceleration time is equal to the braking time. On the other hand,
the proper time expended on traversal of the second half of the loop with acceleration is
much smaller than the time expended on traversal of the first half of the loop.

The author is grateful to V.Ya. Lin for his discussion of the problem.
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